1. Let \(f(x) = x^{\frac{2}{3}}(3 - x)^{\frac{1}{3}} \).

 (a) i. Find \(f'(x) \) for \(x \neq 0, 3 \).

 ii. Show that \(f''(x) = \frac{-2}{x^{\frac{4}{3}}(3 - x)^{\frac{2}{3}}} \). [2]

 (b) Determine with reasons whether \(f'(0) \) and \(f'(3) \) exist or not. [2]

 (c) Determine the values of \(x \) for each of the following cases:

 i. \(f'(x) > 0 \).

 ii. \(f'(x) < 0 \).

 iii. \(f''(x) > 0 \).

 iv. \(f''(x) < 0 \). [3]

 (d) Find all relative extrema and points of inflexion of \(f(x) \). [3]

 (e) Find all asymptotes to the graph of \(f(x) \). [2]

 (f) Sketch the graph of \(f(x) \). [3]

2. Let \(f(x) = \frac{|x|(x + 1)}{x + 2} \) for \(x \neq -2 \).

 (a) i. Find \(f'(x) \) and \(f''(x) \) for \(x \neq 0, -2 \).

 ii. Is \(f \) differentiable at \(x = 0 \)? Explain your answer. [4]

 (b) Determine the values of \(x \) for each of the following cases:

 i. \(f'(x) > 0 \).

 ii. \(f'(x) < 0 \).

 iii. \(f''(x) > 0 \).

 iv. \(f''(x) < 0 \). [3]

 (c) Find all relative extrema and points of inflexion of \(f(x) \). [2]

 (d) Find all asymptotes to the graph of \(f(x) \). [3]

 (e) Sketch the graph of \(f(x) \). [3]