Question: 1 2 3 Total
Marks: 6 6 7 19
Score:

1. (a) For all $x > 0$, find $\frac{d}{dx}(x^x)$. (3 marks)
 (b) Evaluate $\lim_{x \to 1} \frac{x^x - x}{\ln x - x + 1}$. (3 marks)

2. (a) Find $\lim_{x \to 0^+} x^2 \ln x$. (2 marks)
 (b) Let k be a real constant and $f : \mathbb{R} \to \mathbb{R}$ be defined by

 $$f(x) = \begin{cases}
 \sin 2x + \cos x + k & \text{when } x \leq 0, \\
 x^3 \ln x & \text{when } x > 0.
 \end{cases}$$

 It is given that $f(x)$ is continuous at $x = 0$.
 (i) Find k. (2 marks)
 (ii) Is $f(x)$ differentiable at $x = 0$? Explain your answer. (2 marks)

3. Let a, b and c be real constants and $f : \mathbb{R} \to \mathbb{R}$ be defined by
 $$f(x) = \begin{cases}
 \frac{12 + a\sqrt{9-x}}{x} & \text{when } x < 0, \\
 c + b \tan \frac{x}{8} & \text{when } x \geq 0.
 \end{cases}$$

 It is given that $f(x)$ is continuous at $x = 0$.
 (a) Explain why $\lim_{x \to 0} f(x) = c$. (1 mark)
 (b) Hence find a (1 mark)
 (c) Find c. (2 marks)
 (d) Furthermore, $f(x)$ is differentiable at $x = 0$. Find b. (3 marks)