1. In $\triangle ABC$, $AB = AC$ and $\angle B = 62^\circ$. Which is longer, AB or BC?

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{fig. 1}
\end{figure}

2. The sides CA, CB of $\triangle ABC$ are produced to H, K; the bisectors of $\angle ABC$, $\angle ACB$ meet at I; $\angle BAH = 126^\circ$, $\angle ABK = 118^\circ$. Which is the longer, IB or IC?

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2}
\caption{fig. 2}
\end{figure}

3. In fig. 3, $ABCD$ is a straight line; BQ, CQ are the bisectors of $\angle PBD$, $\angle PCD$. Which is the longer,
 (a) PB or PC,
 (b) BC or QC?

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3}
\caption{fig. 3}
\end{figure}

4. In fig. 4, $ABCD$ is a straight line. $\angle PCD$. Which is the longer,
 (a) RB or RC,
 (b) PB or PR?

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4}
\caption{fig. 4}
\end{figure}
5. In \(\triangle ABC \), \(\angle A = 60^\circ \), \(\angle B = 58^\circ \); AB, AC are produced to H, K; PB, PC are the bisectors of \(\angle HBC \), \(\angle KCB \). Which is longer,

(a) AB or AC,

(b) PB or PC?

6. In \(\triangle ABC \), \(\angle A = 30^\circ \), \(\angle B = 56^\circ \); the bisector of \(\angle BAC \) cuts BC at X. Arrange in order of length, the shortest first, AX, BX, CX.

7. P is a point between B and C on the side BC of \(\triangle ABC \), such that PA=PC; \(\angle C = 58^\circ \), \(\angle PAB = 33^\circ \). Which is the longer, PB or PC?

8. P is a point between B and C on the side BC of the equilateral triangle ABC. Arrange in order of length, the shortest first, the sides of \(\triangle ABP \).
9. Is it possible to draw a triangle whose sides are of lengths
 (a) 2.5 cm., 3.5 cm., 6.5 cm.;
 (b) 2 m., 3 m., 4 m.;
 (c) 1 cm., 2 cm., 3 cm.?

10. How many unequal triangles can be drawn such that the lengths of two sides are 4 cm.,
 7 cm., and such that the length of the third side is a whole number of centimeter?

11. ABCD is a convex quadrilateral in which AB = 7 cm., BC = 2 cm., CD = 3 cm., DA =
 4 cm.
 (a) Between what limits must the length of AC lie?
 (b) Prove that \(\angle DCB > \angle DBC \) and that \(\angle ADB > \angle DAB \).
12. ABCD is a trapezium in which AB, DC are the parallel sides; AC cuts BD at K. If \(\angle CAB = 41^\circ \) and \(\angle AKB = 100^\circ \), find which is the greater, AC or BD.

13. In fig. 13, RQ is parallel to BC. Prove that
 (a) \(AR > PR > QC \);
 (b) \(BP > PQ \).

14. In \(\triangle ABC \), \(\angle B = 90^\circ \), \(\angle C = 29^\circ \); prove that \(AB < \frac{1}{2} AC \).